2ndQuadrant T
PostgreSQL

__\. |
" . o '
! ay
| 2018
1

%S databaseyEEA
Gulgin Yildirhm Jelinek @

select * from me:

Board of Directors @ PostgreSQL Europe

Cloud Services Manager @ 2ndQuadrant

Main Organizer @ Prague PostgreSQL Meetup
Member @ Postgres Women

MSc, Computer & Systems Eng. @ TalTech

BSc, Applied Mathematics @ Yildiz Technical University

Writes on 2ndQuadrant blog
From Turkey
Lives in Prague

@apatheticmagpie
Github: gulcin

https://www.postgresql.eu/about/board/
http://2ndquadrant.com/en-us/
https://www.meetup.com/Prague-PostgreSQL-Meetup/
https://wiki.postgresql.org/wiki/Postgres_Women
https://www.ttu.ee/
http://www.yildiz.edu.tr/en/
http://blog.2ndquadrant.com/author/gulcin-yildirim/
http://twitter.com/apatheticmagpie
https://github.com/gulcin

Agenda

Design choices of PostgreSQL
Arrays, Enum, JSON
JSONB and GIN
Full Text Search in PostgreSQL
= tsvector, tsquery
= Ranking
= Misspelling
m Accent support
m | anguage support
Why PostgreSQL?

Design Choices of PostgreSQL

e Conventional Relational PostgreSQL

= Tables, Columns, Rows, Query Processing
e Object Relational PostgreSQL

= Extensibility

o Rich type system
o Wide variety of index types

e Power of combining all

= Following SQL standards
= ACID properties

Arrays

Standard arrays

Array operators (@>, <@, &&, =, <> etc()
Search in the array

Process array elements from SQL directly
Index them with GIN

= This index access method allows PostgreSQL to index the
contents of the arrays, rather than each array as an opaque
value.

Column

film id

title
description
release year
language id
original language id
rental duration
rental rate
length
replacement cost
rating

last update
special features

LuUulLlLLCAL

Table "public.film"
| Collation | Nullable

Type

integer
text

text

year
smallint
smallint
smallint
numeric(4,2)
smallint
numeric(5,2)
mpaa rating
timestamp with time zone
text[]

LovecCLur

not

not

not

not
not

not

not

not

null

null

null

null
null

null

null

null

nextval('f

19.99
'G'::mpaa_
now ()

fts demo=> Select film id, special features from film
where special features @> array['Deleted Scenes'] limit 15;

film id | special features

1 | {"Deleted Scenes","Behind the Scenes"}

2 | {Trailers,"Deleted Scenes"}

3 | {Trailers,"Deleted Scenes"}

5 | {"Deleted Scenes"}

6 | {"Deleted Scenes"}

7 | {Trailers, "Deleted Scenes"}

9 | {Trailers, "Deleted Scenes"}

10 | {Trailers, "Deleted Scenes"}

12 | {Commentaries, "Deleted Scenes"}

13 | {"Deleted Scenes","Behind the Scenes"}

14 | {Trailers, "Deleted Scenes","Behind the Scenes"}

19 | {Commentaries,"Deleted Scenes","Behind the Scenes"}
20 | {Commentaries,"Deleted Scenes","Behind the Scenes"}
23 | {Trailers, "Deleted Scenes"}
26 | {Commentaries, "Deleted Scenes"}

(15 rows)

fts demo=> CREATE INDEX idx sp features ON film USING GIN(special features);
CREATE INDEX

fts demo=> Explain analyze (Select * from film
where special features @> array['Deleted Scenes']);
QUERY PLAN

Bitmap Heap Scan on film (cost=11.90..73.19 rows=503 width=386) (actual time=0.058
Recheck Cond: (special features @> '{"Deleted Scenes"}'::text[])
Heap Blocks: exact=55
-> Bitmap Index Scan on idx sp features (cost=0.00..11.77 rows=503 width=0) (ac
Index Cond: (speciéT:Eggzﬁ;gg-@;-¥?"Deleted Scenes"}'::text[])
Planning time: 0.512 ms
Execution time: 0.267 ms

(7 rows)

Enum

Lookup table

Stores integer instead of whole value in table
Denormalized, you don't need a separate table
Faster reads

Intended for static sets of values

Takes very little space, four bytes on disk

All of this is indexable! \o/

create type status as enum('backlog',

'in-progress', 'done', 'delivered');

create table issues
(
id bigint primary key,
description text,
state status

)

insert into issues(id, description, state)
values (1, 'Implement Job for Switching DNS API Call',

(2, 'Report an issue mechanism for customers',
(3, 'Cost reports', 'done'),

(4, 'Scheduled Jobs Mechanism',

'backlog'),
'‘in-progress'),

‘delivered');

fts demo=> Select * from issues

where state = 'in-progress';
id | description | state
2 | Report an issue mechanism for customers | in-progress
(1 row)

fts demo=> set enable segscan = off;
SET

fts demo=> create index idx state on issues(state);

CREATE INDEX

fts demo=> Explain analyze (Select * from issues where state = 'in-progress');

QUERY PLAN

Index Scan using idx state on issues (cost=0.13..8.15 rows=1] width=44)

Index Cond: (
Planning time:
Execution time:

(4 rows)

state =
0.054 ms
0.023 ms

in-progress ' ::status)

(actual tim

JSON

Validated as correct JSON
Stores as text

Keeps the same format as it sent
Useful if;

= you want to store bunch of JSON (fast)
= you don't need to search in JSON itself

Fast to write

= you don't transform but only validate
More intensive to search

= you obviously interpret it every time you access it

12

create table js(id serial primary key, extra json);
insert into js(extra)
values ('[1, 2, 3, 41"),
('[2, 3, 5, 81"),
('{"key": "value"}');

fts demo=> select * from js where extra @> '2';
ERROR: operator does not exist: json @> unknown
LINE 1: select * from js where extra @> '2';

HINT: No operator matches the given name and argument type(s). You might need to ad

alter table js alter column extra type jsonb;

fts demo=> select * from js where extra @> '2';
id | extra

1|11, 2, 3, 4]
2 | 12, 3, 5, 8]
(2 rows)

JSONB

e |SONB is already stored in (internal binary format) interpreted
form. This means:

= storing take a little while longer (more CPU process)
= put processing (retrieval) faster

e The main thing is all JSON document can be indexed with a
single GIN index. (jsonb_path_ops vs jsonb_ops)

fts demo=> create index on js using gin (extra jsonb path ops);

14

fts demo=> explain analyze (select * from js where extra @> '2');
QUERY PLAN

Bitmap Heap Scan on js (cost=8.00..12.01 rows=1 width=36) (actual time=0.011..0.01
Recheck Cond: (extra @> '2'::jsonb)
Heap Blocks: exact=l1l
-> Bitmap Index Scan on Js extra idx (cost=0.00..8.00 rows=1] width=0) (actual t

Index Cond: (extra @ 2 ::jsonb)

Planning time: 0.054 ms

Execution time: 0.031 ms

(7 rows)

fts demo=> explain analyze (select * from js where extra @> '[2,3]");
QUERY PLAN

Bitmap Heap Scan on js (cost=12.00..16.01 rows=1 width=36) (actual time=0.012..0.0
Recheck Cond: (extra @> '[2, 3]'::jsonb)
Heap Blocks: exact=l1l
-> Bitmap Index Scan on Jjs extra idx (cost=0.00..12.00 rows=1] width=0) (actual

Index Cond: (extra @> 12, 3] ::jsonb)

Planning time: 0.053 ms

Execution time: 0.032 ms

(7 rows)

JSONB

e |nterpreted format is different than what you sent originally, it
goes through normalisation:

= keys are sorted
= duplicated keys are removed and only first ones are saved
= whitespaces removed etc.
e Fits into JSON standard (JSONB is Postgres' JSON)
= schemaless PostgreSQL
= heterogeneous set of documents all in a single relation
= semi-structured data model

16

GIN

Generalised Inverted Index

\ Why? /

forward indexes backward (inverted) indexes
list of documents and which list of words and in which
words appear in them documents they appeared
e thereis almost no e jtis efficient
duplication e duplicate data in values

e the more duplication the
more efficient indices

17

GIN

ID |Document Term Document ID

1 |PostgreSQL is awesome | Jawesome (1,2, 4

2 |Awesome things happen | happen 2

3 |Prague loves PostgreSQL | s 1.4

4 |Prague is awesome too! loves 3

5 |Thanks! prague 3,4
postgresq| 1,3
thanks 5

inverted index simplified things 2

too 4

18

GIN

e GIN is an index that allows indexing of complex data types
m Postgres data types extract keys and positions of them
= Key is data type specific
= |n the case of JSON it can store of the paths of]SONB

documents. This is its key.

e GIN is very efficient in duplicate keys (GIN keys)
= Keys of JSON != Keys of GIN

e GIN has more compact way of storing duplicate values (keys)
than B Tree

19

https://www.postgresql.org/docs/current/static/gin-intro.html

FTS in PostgreSQL

FTS in PostgreSQL

e FTSis implemented in a similar fashion like JSONB type:

= there are types like ts_vector which get text input and parses
into lexemes

e Difference between J[SONB:

= ts_vector only stores info that is useful for FTS while JSONB
stores the actual document as well
m that has affect on how it is used afterwards:

o JSONB is used as column type while ts_vector is mostly
used for creating indexes as index definition or compound
values (indexing multiple columns at the same time)

21

tsvector

tsvector which is a type suited to full-text search

fts demo=# SELECT to tsvector(is an fallegory afstoryl');

to tsvector

allegori':4f'happi':1l §lstori':7 ¥ unhappi':5
(

LI LOwW)

fts demo=# SELECT to tsvector('Happiness is an allegory, unhappiness a story.')
@@ 'happiness';

?2column?

e B
(1 row)

tsquery

tsquery stores lexemes that are to be searched for

fts demo=# SELECT to tsvector('Happiness is an allegory, unhappiness a story.')
@@ to tsquery('happiness');
?2column?

: &
(1 row)

fts demo=# SELECT to tsvector('Happiness is an allegory, unhappiness a story.')
@@ to tsquery('happiness & unhappiness');
?2column?

t
(1 row)

Querying

Select title, description
from
(select title, description, to_ tsvector(title) ||
to _tsvector(description) as searchterm
from £film) as g
where g.searchterm @@ to tsquery('Human & Database')
limit 5;

title | descriptio

ANONYMOUS JHUMAN || A Amazing Reflection of a Administrator And a Astronaut
HUMANJ GRAFT | A Beautiful Reflection of“a woma er And a Sumo Wrestler who mus

Select title, ts rank(g.searchterm, to tsquery('DINOSAUR | Feminist')) as searchrank

from
(select title, description, setweight(to tsvector(title), 'A') ||
setweight (to tsvector(description), 'B') as searchterm
from film) as q
where g.searchterm @@ to tsquery('DINOSAUR | Feminist')
order by searchrank desc

limit 5;
title | searchrank | descri
ACADEMY | 0.425549 | A Epic Dra! Fepipist And a Mad Scientist wh
DINOSAUR RETARY | 0.425549 | A ign_Packed Dra Feminist| And a Girl wh
"TER. PLNOSAUR | 0.303964 | A 1 Charact 8T & Sumo er An
SPY MIL | 0.165491 | A g Doc v _of a [Feminist Femin
BUNCH MINDS | 0.151982 | A Emotional Sto Feminist|And afFeminist| wh

(5 rows)

Similarity Search Using Trigrams

hello Trigram? hallo

e e
"he" "ha"
"hel" "hal"
"ell" "all"

l“lcfl 'W|Cfl

llloll "|O"

Oll IIO"

fts demo=# Create extension pg trgm;
CREATE EXTENSION

fts demo=# select similarity(' 'hello', 'hallo');
similarity

0.333333
(1 row)

26

Similarity and Distance

%,<%, <->

fts demo=# explain analyze select description from film
where description %> 'Feminist';

QUERY PLAN

Seq Scan on film (cost=10000000000.00..10000000067.50 rows=1 width=94) (actual tim
Filter: (description %> 'Feminist'::text)
Rows Removed by Filter: 916

Planning time: 0.046 ms

Execution time: 14.919 ms

fts demo=# CREATE INDEX trgm idx ON film USING GIN (description gin trgm ops);
CREATE INDEX

fts demo=# explain analyze select description from film
where description %> 'Feminist';
QUERY PLAN

Bitmap Heap Scan on film (cost=76.01..80.02 rows=1 width=94) (actual time=0.113..1
Recheck Cond: (description %> 'Feminist'::text)
Rows Removed by Index Recheck: 29
Heap Blocks: exact=49
-> Bitmap Index Scan on trgm idx (cost=0.00..76.01 rows=1] width=0) (actual time
Index Cond: (descriptiom®> 'Feminist'::text)
Planning time: 0.132 ms
Execution time: 1.970 ms

Like Queries

LIKE, ILIKE, ~, ~%

fts demo=# Explain analyze select description from film
where description like '$Feminist%';

QUERY PLAN

Bitmap Heap Scan on film (cost=52.63..111.30 rows=81 width=94) (actual time=0.052.
Recheck Cond: (description ~~ '%Feminist%'::text)
Heap Blocks: exact=42
-> Bitmap Index Scan on trgm idx (cost=0.00..52.61 rows=81 width=0) (actual tim

Index Cond: (description ~~ '$Feminist$%'::text)

Planning time: 0.108 ms

Execution time: 0.135 ms

(7 rows)

Misspelling

fts demo=# CREATE TABLE unique lexeme AS
SELECT word FROM ts_stat(
'SELECT to tsvector(''simple'', first name) ||
to_tsvector(''
FROM actor
GROUP BY actor id');

simple' ', last name)

fts demo=# CREATE INDEX lexeme idx ON unique lexeme USING GIN (word gin trgm ops);
CREATE INDEX

fts demo=# SELECT word from unique lexeme
WHERE similarity(word, 'sinatro') > 0.5
ORDER BY word <-> 'sinatro'
LIMIT 10;
word

sinatra
(1 row)

Multilingual PostgreSQL

Built-in text search for Danish, Dutch, English, Finnish, French,
German, Hungarian, Italian, Norwegian, Portuguese, Romanian,
Russian, Spanish, Swedish, Turkish.

—
—

30

Accent Support

CREATE EXTENSION unaccent;

SELECT unaccent('Gilg¢in Yildirim Jelinek');
unaccent

Gulcin Yildirim Jelinek
(1 row)
turkish);

fts demo=# CREATE TEXT SEARCH CONFIGURATION tr (COPY

CREATE TEXT SEARCH CONFIGURATION

fts_demo=# ALTER TEXT SEARCH CONFIGURATION tr
ALTER MAPPING FOR hword, hword part, word WITH unaccent, turkish stem;

ALTER TEXT SEARCH CONFIGURATION

fts demo=# SELECT to tsvector('tr', 'Gulcin') @@ to tsquery('tr', 'gulcin') as resul

result

t
(1 row)
fts demo=# set default text search config to 'tr';

SET
fts demo=# SELECT to tsvector('Gilcin') @@ to tsquery('gulcin') as result;

result

t

/4 1 AY

PostGIS

Geospatial search in PostgreSQL? GIN? Yes, ofc!

Why PostgreSQL?

Advantages of PostgreSQL over using a search engine:

e You can use the existing relations

e You can query related information (joins)

e You can do all in one query (transactional)

e When you update (insert, delete) your document, indexes are
updated automatically

= Rebuilding indexes are not a concern
= FTS is always up-to-date (no 404)

e Same ACID properties
e You don't need to maintain two techs (two dataset)

33

Why PostgreSQL?

JSONB

e Stable schema and flexibly evolving data in the same database
e Denormalisation without the downsides

= No unnecesary tables
= NO unnecessary joins

fts demo=# Select first name, last name, education from staff;

—~[RECORD 1]
first name | Mike
last _name | Hillyer

education | {"properties":

—~[RECORD 2]

first name | Jon
last name | Stephens
education | {"properties":

{"university":

{"university":

{"type" :

{"type" :

"oxford"}, "high school": {"name

"tallinn university of technolog

References

Thanks Petr Jelinek (<3) for the idea, proof-reading and all the
support!

Thanks Magnus Hagander for recommending the Pagila dataset.
https://tapoueh.org/tags/data-types/
http://rachbelaid.com/postgres-full-text-search-is-good-enough/
http://www-
old.bartlettpublishing.com/site/bartpub/blog/3/entry/350
http://www.nomadblue.com/blog/django/from-like-to-full-text-
search-part-ii/

35

https://www.linkedin.com/in/petr-jelinek-481b9144/
https://twitter.com/magnushagander
https://github.com/devrimgunduz/pagila
https://tapoueh.org/tags/data-types/
http://rachbelaid.com/postgres-full-text-search-is-good-enough/
http://www-old.bartlettpublishing.com/site/bartpub/blog/3/entry/350
http://www.nomadblue.com/blog/django/from-like-to-full-text-search-part-ii/

Thank you! Questions?

